
Abstract. The iterative di�erence-dedicated CI method
(IDDCI) has been applied to determine excitation
energies in small systems for which benchmark FCI
and other high-level calculations exist. Transitions to
excited singlet and triplet states in Be and vertical
transitions in CH+, BH and CH2 are reported. The
deviations from FCI results are lower than 0.1 eV and
compare advantageously with SDCI including size-
consistency corrections, (SC)2SDCI, and with coupled
cluster calculations including the e�ect of triples, espe-
cially for the states which have a predominant double
excitation character. The IDDCI procedure has been
speeded up by using smaller subspaces for optimizing the
molecular orbitals.
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Di�erence dedicated CI ± Orbital improvement

1 Introduction

There are various methods available nowadays for
determining the molecular properties of the ground
state, all of which give results which are very close to the
FCI ones. Among them, several coupled cluster methods
(CC), which include the e�ect of triples, have been
described [1±4]. Results of similar quality may also be
obtained by dressing the singles and doubles CI (SDCI)
matrix with corrections that enable size-consistency to
be restored by means of the (SC)2 technique [5, 6].
However, the accurate treatment of excited states is a
more di�cult problem. Both types of procedures have
been extended to calculate excitation energies. Of the CC
procedures, the CCSDT level for the reference state has
led to di�erent accurate approximations in the equation
of motion (EOM) treatment [7±9], such as CCSDT-3
and CCSD(~T) [9], or in the linear response (LR)
approach, such as CC3 [10]. In the (SC)2 framework,

recent works [11, 12] have proved that excitation
energies can be determined from the higher roots
obtained from diagonalizing the dressed SDCI or MR-
SDCI matrix built for the ground state. The results of
both types of calculations are in general very good,
although some discrepancies appear. This is the case in
the above-mentioned CC3 or CCSD(~T) methods, which
render excellent agreement with FCI results when the
excited state is dominated by a single excitation, but a
considerable error when the excited state has a large
double excitation character. The (SC)2 method applied
to a single reference SDCI, (SC)2SDCI, or to a small
multireference CI, (SC)2MRCI, overcomes most of this
problem but the results are dependent on the orbitals
used in the calculation.

Among the multireference methods, widely used
methods such as CASPT2 [13] give very good results for
a large number of systems [14±18]. However, in spite of
this general high quality, signi®cant errors may appear
in some particular cases, when there is a non-negligible
mixture between states of di�erent character, e.g. va-
lence and Rydberg, in other words, when the reference
and the outer space are not sharply separated. The
contracted character of the method does not allow
the external correlation to modify the coe�cients of
the complete active space (CAS) since it does not contri-
bute in ®rst-order perturbation theory.

In order to solve these problems, we have described
the di�erence-dedicated con®guration interaction meth-
od (DDCI) [19], which consists of a CI built only with a
small reference space and in the subspace of the singles
and the doubles which contribute to the energy di�er-
ence on the grounds of second-order perturbation con-
siderations, i.e. the CASSDCI subspace de®ned by that
CAS, all singles, and the doubles which involve at least
one active orbital. The most important feature of the
method is that the role of the dynamic correlation on the
CAS is explicitly considered in the variational calcula-
tion. An iterative version of the method, IDDCI [20],
has recently been proposed that allows the results to be
independent of the starting molecular orbitals (MOs),
since they are iteratively optimized. The results obtained
up to now have been excellent, but because of the
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iterative procedure for obtaining the MOs, it may be
objected that the successive diagonalizations make the
method expensive. This problem has been recently
solved, since the MOs can be optimized with just a small
subspace of the complete DDCI space. In this paper, we
present the results obtained using this procedure on
some FCI benchmarks such as Be, CH+, BH and CH2

for which results with CCSD [21], CCSDT-3 [9], CC3
[10, 22, 23] or (SC)2 [11] also exist, so the performance of
the di�erent methods can be compared. After a brief
reminder of the IDDCI method, the transitions to dif-
ferent excited singlet and triplet states of these systems
are presented.

2 Method

2.1 Selection of the di�erential space

In previous papers [19, 20, 24, 25], we proposed a speci®c
con®guration interaction for the direct evaluation of
energy di�erences, the DDCI method. This method is
based on a zero-order description of the transitions
given by a small CAS, with n electrons (two in most
cases) and m active orbitals, which include valence
occupied and unoccupied as well as Rydberg orbitals to
describe the di�use states or states of a valence-Rydberg
mixed character when necessary.

Once the model space has been de®ned by the CAS,
an e�ective Hamiltonian can be built from a second-
order expansion in the framework of the quasi-degen-
erate perturbation theory, (QDPT [26]). At this level, it
is easy to demonstrate [19] that the double excitations
from two inactive occupied MOs, p and q, to two un-
occupied MOs, i and j, pq! ij, do not contribute to the
o�-diagonal elements of the e�ective Hamiltonian and,
since the e�ect of these determinants is to shift the same
value over all diagonal elements, these excitations are
not relevant to the evaluation of excitation energies. This
information gives a criterion for building a selected CI
space, the DDCI space, which includes all the single and
double excitations with at least one active MO. This
space is treated variationally so the intruder state
problem is avoided and the weight of the CAS deter-
minants in the wave function is modi®ed by the e�ect of
the dynamic correlation.

The main characteristics of the DDCI method may be
summarized in four points:

1. DDCI is a variational method.
2. It is an uncontracted method, which may be crucial if

excited states are to be accurately described, since the
external correlation may substantially modify the
coe�cients of the CAS since it is included at in®nite
order.

3. The DDCI matrix is invariant under rotation of the
MOs in the doubly occupied or virtual subsets.

4. By avoiding the most numerous double excitations,
those implying two inactive double occupied and two
inactive virtual orbitals, pq! ij, the size of the
DDCI space [19] increases only with the third power
of the basis set dimension, N3, where N is the number

of orbitals, while the MR*SDCI space increases with
N4. This last feature and the fact that the CAS taken
as model space is quite small makes DDCI especially
advantageous when compared with other CI meth-
ods. On the other hand, the comparison with the
CC3 iterative procedure is even more favourable,
since its computation time scales as N7, while the
SDCI scales as N6. On top of this, for CC3 and
related methods, the cost of the iterations must be
added. On the other hand, the (SC)2SDCI method
scales as N6, but needs iterative diagonalizations to
reach self-consistency.

2.2 Choice of the molecular orbitals

The main problem of DDCI, as well as other truncated
CI procedures, is the fact that the results depend on the
choice of the starting molecular orbitals. In general, the
canonical orbitals are a good choice for describing
valence states [24], but poor results are obtained if
di�use Rydberg states are to be calculated. In order to
avoid this lack of accuracy an iterative improvement in
the active orbitals has recently been proposed [20].

Let us suppose that we are interested in the energy
gap between the ground state and several excited states.
An initial DDCI calculation gives the DDCI wave
function for the n lowest states. From here the associ-
ated one-particle density matrices can be calculated for
each state in the initial basis set of MOs. We can now
de®ne a new density matrix �R as the average of the
density matrices of all these states. By diagonalizing this
average density matrix, a new set of MOs is obtained.
Their occupation numbers give useful information for
classifying the MOs in the three sub-sets, inactive doubly
occupied, virtual and active MOs. Thus, when the oc-
cupation number is close to two the MO is an inactive
core orbital, and when close to zero, a virtual orbital.
Intermediate occupations correspond to active orbitals.
The new set of MOs is used to perform a new DDCI,
and the procedure is iterated until the self-consistency of
the wavefunctions and energies of the di�erent states is
attained. This iterative procedure for improving the
MOs is expected to increase the projection on the CAS
of the DDCI eigenvectors.

The main problem of this iterative procedure, which
we have called IDDCI, is the high computational cost
for large DDCI spaces, since the molecular integrals
must be calculated, the DDCI matrix diagonalized and
the density matrix built for each state at each iteration,
typically four times before the self-consistency is
reached. To avoid this inconvenience, the whole iterative
procedure may be shortened using a smaller subspace of
DDCI. Since only the single excitations are directly
coupled to the determinants of the CAS through the
single particle density operator, R:

hUIjRjUai � 0; if jUIi 2 CAS, and jUai � D�ajUIi ;
where D�a is a double excitation operator, a very fast
iterative procedure may be performed using only the
determinants obtained by single excitations over the
CAS, the CAS*S space, in such a way that the space
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remains very small. Once the self-consistency has been
reached and a new set of orbitals specially adapted to
the calculation of the excitation energy has been
obtained, only one diagonalization is performed with
the whole DDCI space. Up to now, the orbitals obtained
with this procedure are very close to those obtained with
the initially described IDDCI procedure [20], which used
the whole DDCI space throughout the procedure.

The above procedure is not the only way of obtaining
mean natural orbitals: state-averaged CASSCF calcula-
tions can also provide active orbitals well suited for
determining electronic transitions. Some tests on the
benchmark systems presented in the next section have
proved a similar e�ciency when di�erent states of the
same symmetry are considered. However, the advantage
of the IDDCI procedure is that it allows us without any
di�culty to mix states belonging to di�erent irreducible
representations.

3 Results

The IDDCI method was applied to di�erent benchmark
systems: Be, CH+, BH and CH2, for which FCI [23,
27, 28], EOM-CCSD [21], CC3 [10, 22, 23], CCSDT-3,
CCSD(~T) [9] or (SC)2 [11] results exist. All the calcula-
tions start with the choice of the initial orbitals and of a
small CAS. The orbitals are optimized through the
IDDCI procedure, which also gives information about
the quality of the CAS at each step. The excitation
energies are calculated as the di�erence between the
roots of the DDCI space once the self-consistency of the
orbitals is reached.

3.1 Be electronic transitions

The lowest singlet and triplet states, 1,3S, 1,3P0 and 1,3D
of the beryllium atom were calculated using a (15s9p5d/
9s9p5d ) basis set of which FCI results [27] are available.

To describe these states, we de®ne di�erent CAS, all of
which have two electrons and six active orbitals. The 2s
and 2p valence orbitals belong in all cases to the active
space, the 2p orbitals being included to describe the
important 2s2®2p2 polarization e�ect in the ground
state. Two orbitals are added to describe the excited
states: 3s and 4s for the 1,3S states, 3pz and 4pz for the
1,3P0 states and 3dz and 4dz for the 1,3D states.

The calculation was started with the orbitals of the
Be2+ dication, which concentrate the di�use functions
and therefore reproduce the excited states better. Table 1
shows the dimension of the CAS, CAS*S and DDCI
spaces for each irreducible representation, and it can be
seen that the dimension of the single excitation subspace
(CAS*S) used in the iterative procedure is only 10% of
the complete DDCI subspace

Table 2 shows the deviations from the FCI calcula-
tions when determining the excitation energies to sev-
eral excited singlet and triplet states. Although the
results obtained with the orbitals of the dication are
generally good (DDCI column in the table), their
quality is not homogeneous even for the same symme-
try, as shown, for instance, by the 3D states: the devi-
ations from the FCI transitions go from )0.016 eV for
the 13D to 0.091 eV for the 23D. It may also be veri®ed
that the results depend on the type of MOs used in the

Table 1. The di�erence-dedicated CI (DDCI) space dimension for
Be

Transition Symmetry CAS CAS*S DDCI

X 1S ® 1,3S
S 12 1158 11037

X 1S ® 1,3P0

S 12 1066 10261
P 6 1010 10420

X 1S ® 1,3D
S 8 886 9713
D 6 942 9546

Table 2. Be excitation energies
to singlet and triplet states. FCI
results and deviations from
FCI, in eV (MAE, mean abso-
lute error)

aRef. [21]
bRef. [9]
c Ref. [22]
dRef. [11]
e This work
f Ref. [27]

State EOMCCSDa CCSDT-3b CC3c SDCId (SC)2CId DDCIe IDDCIe FCIf

Singlet

11P0 0.001 0.000 0.668 0.011 )0.010 0.003 5.318
11S 0.002 0.001 0.615 0.015 0.000 )0.005 6.765
11D 0.008 0.012 0.621 0.046 )0.006 0.003 7.089
21P0 0.001 0.000 0.632 0.016 )0.012 )0.005 7.462
21D 0.003 0.004 0.616 0.027 )0.008 )0.008 8.034
21S 0.002 0.001 0.621 0.016 0.077 )0.006 8.076
31P0 0.001 0.001 0.286 0.018 0.076 )0.007 8.302
31D 0.002 0.002 0.088 )0.010 8.536

MAE 0.003 0.003 0.580 0.021 0.035 0.006

Triplet

13P0 )0.004 0.652 )0.007 )0.012 )0.006 2.733
13S 0.003 0.612 0.006 )0.003 )0.005 6.444
23P0 0.006 0.647 0.018 )0.018 )0.009 7.295
13D 0.007 0.315 0.015 )0.016 )0.010 7.741
23S 0.006 0.619 0.013 0.051 )0.007 7.985
33P0 0.006 0.090 0.018 0.067 )0.010 8.272
23D 0.007 0.116 0.015 0.091 )0.011 8.449

MAE 0.006 0.436 0.013 0.037 0.008

52



calculation. The iterative improvement in the MOs
avoids both di�culties. In this case the mean error on
the transitions decreases from 0.037 eV in the ®rst it-
eration to 0.008 eV at the convergence of the procedure
and the error range gets much narrower since it does
not exceed 0.011 eV.

Table 2 also shows the results obtained with other
high-level calculations for excited states, such as EOM-
CCSD [21], CCSDT-3 [9], CC3 [22] or SDCI with and
without size-consistency corrections [11]. The values
obtained with the IDDCI iterative procedure compare
advantageously with the SDCI type methods, since
IDDCI gives a smaller mean deviation from the FCI
results: 0.006 eV for the singlets and 0.008 eV for the
triplets, compared with 0.021 and 0.013 eV for
the (SC)2SDCI method, which is a clear improvement on
the crude SDCI results. Although slightly higher, the
singlet states mean error compares well with the equa-
tion of motion CCSDT-3 and linear response CC3 mean
deviation of 0.003 eV. The same can be said for the
triplets, where the available EOM-CCSD calculations
give a mean error of 0.006 eV.

As previously discussed, the main advantage of the
IDDCI method is the size of the CI space and its
scaling with the basis set dimension. For Be, the FCI
spaces for singlet excited states are formed by around
400 000 determinants, while as shown in Table 1 the
IDDCI spaces contain less than 3% of this number. In
spite of this, errors are always lower than 0.01 eV. The
(SC)2CI shows good results with only 2877 determi-
nants, since this particular case has very high symmetry
and the calculation is performed with a single reference
SDCI.

All the excited states presented in this section are
dominated by single replacement excitations relative to
the reference state. In order to check the response of our
method when describing states which are dominated by
double replacement excitations, calculations were per-
formed on CH+, BH and CH2.

3.2 CH+

Calculations were carried out on the lowest valence
states of CH+ using a (10s6p1d/5s3p1d ) basis set for
carbon and a (5s1p/3s1p) for hydrogen set [28]. The
internuclear distance was ®xed at 2.13713 a.u. The active
space includes two electrons and a variable number of
active orbitals, depending on the symmetry of the excited

state. For the states of R+ and D symmetry, three active
orbitals are necessary, one r+ and two p orbitals. For
the state of P symmetry, one r+ and one p orbital are
needed. Canonical orbitals were used to start the
iterative procedure.

Table 3 shows the dimensions of the spaces used to
calculate the excitation energies. The dimensions must
then be compared with that of the FCI space, formed by
1 729 600 determinants. Table 4 shows the results ob-
tained with our procedure as well as with other methods.
When they are compared with FCI data [28], the poorest
results are given by the CCSD calculations [10] (mean
error 0.505 eV) which include a complete treatment of
single and double excitations. When the e�ect of the
triples is included in a approximate way in the CC3
method [10], the results are systematically improved al-
though the mean error, of 0.187 eV, is still important.
The reason is that these methods do not calculate all the
transitions with the same accuracy. For the excitation to
the 1P state, which is dominated by a single replacement
con®guration, the mean errors are 0.031 eV for CCSD,
0.014 eV for CCSDT-3 [9] and 0.012 eV for CC3, while
the errors for the excitations dominated by a double
replacement con®guration (1R+ and 1D transitions) are
much larger, of several tenths of eV. For the DDCI and
IDDCI calculations the mean error is 0.1 eV and of the
same order for every transition.

MCLR [28] results are also shown in Table 4. Al-
though their quality is impressive, it should be pointed
out that they were obtained using a very large MCSCF
reference state, 9r 4p and 1d active MOs, with 235 633
determinants in the active space. This is 13% of the FCI
space, a big percentage when compared with the 0.2%
used in the DDCI calculation. In fact, when MCLR uses
a number of determinants as DDCI, the error reaches
0.3 eV.

Table 3. DDCI space dimension for CH+

Transition Symmetry CAS CAS*S DDCI

X 1R+® 1R+

R 3 289 2903
X 1R+® 1P

R 2 172 2013
P 2 200 1972

X 1R+® 1D
R 3 289 2903
D 2 272 2344

Table 4. CH+ excitation ener-
gies to singlet states. FCI results
and deviations from FCI, in eV
(MAE, mean absolute error)

State CCSDa CCSDT-3b CC3a MCLRc DDCId IDDCId FCIc

1R+ 0.560 0.233 0.230 0.012 )0.144 )0.134 8.549
1P 0.031 0.014 0.012 0.000 0.076 0.086 3.230
1D 0.924 0.315 0.318 0.003 )0.055 )0.068 6.964

MAE 0.505 0.187 0.187 0.005 0.092 0.096

aRef. [10]
bRef. [9]
c Ref. [28]
d This work
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3.3 BH

The lowest singlet excitations of the BH molecule were
calculated with the same basis set used in the FCI
calculation [23]: a (19s6p3d/5s4p3d) basis set for borine
and a (6s3p/4s3p) basis set for hydrogen. The internu-
clear distance was ®xed at 2.3289 a.u. The active space
includes two electrons in all cases. For the 1R+ states ®ve
active orbitals are necessary: three r+ and two p ones,
the almost localized 2px and the 2py orbitals of borine.
The CAS for the 1P states includes four orbitals, one r+

and three p which are essentially of px character. For the
1D state, there are three active orbitals in the CAS: one
r+ and two p orbitals, the almost localized 2px and 2py
orbitals of borine. The calculations were started with the
BH2+ dication MOs because in this case it was
impossible to give a good description of the excited
states with the canonical ones. In this academic case,
because of the small basis set and the high symmetry, for
some irreducible representations quasi null or strictly
null density matrices may appear when only single
excitations are considered. Consequently, it is not
possible to get the natural orbitals from these density
matrices. To avoid this problem, which appeared in the
determination of the transitions to the 1P y 1D states, the
orbitals of these symmetries were not optimized. Table 5
shows the size of the CAS, CAS*S and DDCI spaces.

Table 6 gives the results for the transitions to singlet
states. The mean errors for CCSD [23], CCSDT-3 [9]
and CC3 [23] methods in comparison with FCI results
are 0.217 eV, 0.09 eV and 0.085 eV, respectively. As in
the previous CH+ calculations, the accuracy of these
results is not homogeneous. For the states dominated
by double replacement con®gurations, the C¢1D and
C1R+ transitions, the mean errors are 0.59 eV at the
CCSD level and 0.25 eV at the CC3 level.

The (SC)2SDCI results of Heully et al. [11] show a
mean error of 0.16 eV. The error is not homogeneous in
this case either. For example, for the C¢1D transition it is
0.547 eV. In order to improve this result, the authors
performed a (SC)2MRCI calculation, but the result still
di�ers from the FCI value by 0.4 eV. The authors believe
that this is because the ground state orbitals are not
adequate to describe the double excited state C¢1D. This
argument is also supported by the DDCI and IDDCI
results, since the mean error decreases from 0.09 eV,
when using the dication MOs, to 0.03 eV when the
transition dedicated orbitals are used, which justi®es our
iterative procedure of improving the MOs. This accuracy
is reached after only four iterations.

3.4 CH2

Calculations were carried out for the lowest transitions
to 1A1,

1A2,
1B1 and

1B2 singlet states in CH2 using a
(18s4p1d/4s2p1d) basis set for carbon and (5s1p/3s1p) for
hydrogen [23]. The geometry was ®xed at dCAH=2.11 AÊ

and aHCH = 75.86°. The size of the active space is
di�erent for each symmetry. The active space for the 1A1

and 1B2 states includes two electrons and four active
orbitals, three a1 and one b2. In the remaining symme-
tries, for both 1A2 and

1B1 states there was a problem
with the size of the active space. For the 1B1 state the
starting active space included two electrons and three
active orbitals of a1, b2 and b1 symmetry. When the
iterative IDDCI procedure was used to improve the
orbitals, a pseudonatural occupation of 1.73 was found
for an orbital, which did not belong to the initially
de®ned active space. This result proved that the
de®nition of the active space was not suitable and that
this orbital should also have been included in the active
space. This example shows how the IDDCI method can
help to de®ne the active space. Finally, the new active
space for the 1A2 and

1B1 states includes four electrons
and four active orbitals, one a1, one b2 and two b1
orbitals for the 1B1 state, and four orbitals of a1, b2, b1
and a2 symmetry for the 1A2 state. Table 7 gives the
dimension of the di�erent spaces. The iterative proce-
dure was performed within the single excitation sub-
space. The starting orbitals were those of the restricted
open-shell (OSRHF) calculation of the ®rst triplet state,
the 3B2.

Table 8 shows the excitation energies to the lowest
singlet states in CH2. The mean error when using

Table 5. DDCI space dimension for BH

Transition Symmetry CAS*S CAS DDCI

X 1R+ ® B1R+, C1R+, D1R+

R 1845 11 20127
X 1R+ ® A1P, D1P, G1P

R 1454 10 14133
P 886 6 15912

X 1R+ ® C¢1D
R 641 3 9981
D 548 2 8546

Table 6. BH excitation energies
to singlet states. FCI results and
deviations from FCI, in eV
(MAE, mean absolute error)

aRef. [23]
bRef. [9]
c Ref. [11]
d This work

State CCSDa CCSDT-3b CC3a (SC)2CIc DDCId IDDCId FCIa

A1P 0.022 0.02 0.008 )0.177 0.084 0.030 2.944
C¢1D 0.795 0.32 0.310 0.547 0.024 0.019 5.880
B1R+ 0.041 0.02 0.016 )0.030 0.022 )0.022 6.378
C1R+ 0.392 0.18 0.180 0.264 0.030 )0.090 6.996
D1P 0.035 0.03 0.014 0.000 0.152 0.008 7.466
E1R+ 0.193 0.06 0.052 0.093 0.286 )0.022 7.559
G1P 0.038 0.02 0.016 )0.008 0.054 )0.010 8.239

MAE 0.217 0.09 0.085 0.160 0.093 0.029
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OSRHF orbitals is 0.12 eV and decreases to 0.05 eV with
the ®nal iterated active orbitals. In this case, comparison
with coupled-cluster approximations is quite favourable
to IDDCI, since the mean error of CCSD and CC3 [23]
results is 0.9 eV and 0.3 eV, respectively. A more detailed
analysis shows that the mean error at the CC3 level for
the states dominated by single replacement excitations is
only 0.008 eV. However, the description of states dom-
inated by a double excitation is rather incorrect, since
the mean error increases to 1.69 eV at the CCSD level
and 0.55 eV at the CC3 level. On the other hand, the
(SC)2MRSDCI procedure of Heully et al. [11], who used
a slightly di�erent basis set, gave very good results for
the transitions to the 21A1 state, which is dominated by
double replacement excitations, and to the 31A1 and
41A1 states, which are essentially described by a single
excitation. The three transitions only deviate from their
FCI values by 0.04 eV, 0.01 and 0.01 eV, respectively.
The size of the (SC)2MRSDCI matrix is, in this case,
around 5000 determinants and the quality and the
computational requirements are quite similar to IDDCI.

4 Conclusions

Comparison with FCI results con®rms the accuracy of
the results obtained by using a small model space and the
iterative procedure for improving the MOs. This leads to

two positive conclusions. The ®rst is that the dimension
of the DDCI space, which is de®ned by all the determi-
nants obtained by single excitations and double excita-
tions involving at least one active MO, remains tractable.
The second is that the zero-order description gives a
simple physical model of the electronic transitions.

It has also been shown that the inexpensive technique
of using the small subspace formed by single excitations
only in the iterative procedure of improving the molec-
ular orbitals and the full DDCI space just at the end of
the procedure is highly e�ective. Moreover, this iterative
procedure gives a rational way of modifying the active
space when necessary, as shown by the transitions to 1B1
and 1A2 states in methylene. Exceptions may be found ,
if the dynamic correlation strongly modi®es the weight
of the determinants of the CAS in the wavefunction. In
these cases, the use of the CAS*S function to optimize
the orbitals is not su�cient. We found an example of this
behaviour in the determination of 1B1u in ethylene, be-
cause of the strong mixture of valence and Rydberg
character. The problem may be easily detected by ana-
lyzing the projections on the CAS, which do not reach
convergence.

An important advantage of the IDDCI method is
that the quality of the results is maintained for di�erent
types of excitations, those which are essentially described
by a single excitation process as well as those with the
main weight on a double replacement. On the contrary,
other methods like the CC3 coupled-cluster method of
Jùrgensen et al. give excellent results for the ®rst type of
transition but very poor results for transitions domi-
nated by double excitations.

The independence of the results from the starting
MOs is an important characteristic of the IDDCI
method. The iterative procedure of optimization of MOs
through the mixing of the density matrices of the states
involved in the transition has shown its good perfor-
mance. This technique could as well be used with other
accurate CI procedures such as the dressing (SC)2 tech-
nique which generally gives quite accurate results but
fails in some cases because of the inadequacy of the
canonical MOs to describe the excited states with few
references. However, the dressing (SC)2 procedure uses
full SDCI spaces and needs to iterate the diagonalization
of the CI space to self-consistency which increases the
computational cost.

A ®nal comment concerns the use of the method on
potential curves. Since the reference space is the CAS
and the CI space is preserved along the geometry vari-
ation, the curves are perfectly smooth, as has been
shown in the potential curves of di�erent excited states
of KH and K2 [29].
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Table 7. DDCI space dimension for CH2

Transition Symmetry CAS CAS*S DDCI

1 1A1 ® 21A1, 3
1A1, 4

1A1

A1 10 854 7990
11A1 ® 11B2, 2

1B2, 3
1B2

A1 10 854 7990
B2 6 710 7044

11A1 ® 11B1, 2
1B1

A1 10 1342 21536
B1 8 1324 21516

11A1 ® 11A2, 2
1A2

A1 10 1326 21550
A2 10 1438 21590

Table 8. CH2 excitation energies to singlet states. FCI results and
deviations from FCI, in eV (MAE, mean absolute error)

State CCSDa CC3a DDCIb IDDCIb FCIa

21A1 1.456 0.471 )0.150 )0.112 4.656
31A1 )0.005 )0.005 )0.114 )0.033 6.514
41A1 )0.019 )0.005 )0.109 )0.027 8.479
11B2 )0.014 )0.005 )0.005 0.041 1.793
21B2 1.799 0.571 )0.161 )0.076 8.906
31B2 1.823 0.615 )0.044 0.044 10.552
11B1 0.011 0.016 0.022 )0.027 7.703
21B1 1.603 0.517 0.044 0.044 8.016
11A2 0.005 0.005 0.120 0.098 5.853
21A2 2.416 1.173 0.479 0.019 9.409

MAE 0.914 0.338 0.125 0.051

aRef. [23]
b This work
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